Polynomials on banach spaces whose duals are isomorphic to ℓ1 (Γ)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON BANACH SPACES WHOSE DUALS ARE ISOMORPHIC TO l1(Γ)

In this paper we present new characterizations of Banach spaces whose duals are isomorphic to l1(Γ), extending results of Stegall, Lewis-Stegall and Cilia-D’Anna-Gutiérrez.

متن کامل

Isomorphic and isometric copies of l∞(Γ) in duals of Banach spaces and Banach lattices

Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X contains an isometric copy of c0 iff X contains an isometric copy of l∞, and (2) E contains a lattice-isometric copy of c0(Γ) iff E contains a lattice-isometric copy of l∞(Γ).

متن کامل

A note on Banach spaces with l1-saturated duals

Let E and F be Banach spaces. We say that E is F -saturated if every infinite dimensional closed subspace of E contains an isomorphic copy of F . In [2], it is shown that there exists a c0-saturated Banach space with an unconditional basis whose dual contains an isomorphic copy of l2. In this note, we give an example where the dual situation occurs. It is shown that there is a Banach space with...

متن کامل

Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

متن کامل

On Approximate l1 Systems in Banach Spaces

Let X be a real Banach space and let (f(n)) be a positive nondecreasing sequence. We consider systems of unit vectors (xi) ∞ i=1 in X which satisfy ‖ ∑ i∈A±xi‖ ≥ |A| − f(|A|), for all finite A ⊂ N and for all choices of signs. We identify the spaces which contain such systems for bounded (f(n)) and for all unbounded (f(n)). For arbitrary unbounded (f(n)), we give examples of systems for which [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2004

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700035863